A Coarse Grained Force Field To Speed Up Molecular Simulations With Better Predictions Of Thermophysical Properties Of Fluids

S.KHENNACHE

H.HOANG, S.DELAGE SANTACREU, R.PRIVAT, G.GALLIERO

1Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, UMR5150, Pau, France.
2Institute of Fundamental and Applied Sciences, Duy Tan University, Vietnam.
3Université de Pau et des Pays de l'Adour, e2s UPPA, CNRS, IPRA, LMAP, UMR5142, Pau, France
4Université de Lorraine, École Nationale Supérieure des Industries Chimiques, LRGP (UMR CNRS 7274), 54000, Nancy, France.

JSMCIA2022 : journée scientifique 2022 du Mésocentre de Calcul Intensif Aquitain

samy.khennache@univ-pau.fr
guillaume.galliero@univ-pau.fr
Plan

Global Context
Molecular models
The tool: molecular simulation
Methodology to develop the coarse grained force field
Parametrization of the force field
Results: Equilibrium & transport properties + benchmarking
CPU time: fine models vs coarse grained model
A SAFT type EoS model as an alternative to molecular simulation
Thermophysical fluid properties (PVT, viscosity ...) are crucial for operating/designing many systems.

Five main options:
- Experiments *(costs)*
- Machine learning *(black box)*
- Adhoc correlations *(extrapolation)*
 - Theory *(simple model)*
 - Molecular simulations *(time costs)*

COARSE GRAINED (+ THEORY) FOR AN UNIFIED ALTERNATIVE ?
Molecular models
Molecular Models

All atom models

High resolution

- $nC_{10}H_{22}$

Coarse grained models

Low resolution

- Upscaling

$U_{LJ} = 4\varepsilon \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6}$

How to alleviate this weakness on the transport properties prediction?

- A use of a Mie potential instead of LJ potential is already explored. Considerable improvements have been shown, but fails for larger molecules at low T. (Hoang et al.2017 (MieCCG), Rahman et al.2018 (SAFT-Y-Mie))

Expected to give quasi-experimental thermophysical data
Applicable to well characterized systems (less cases...)
Dozen of parameters (10 at least!!!)
High CPU time consumption

Gives quasi-experimental equilibrium properties
Compatible with developed theories (SAFT, ...)
Less CPU time consumption

BUT

Poor prediction of transport properties

Applicable to well characterized systems (less cases...)
Dozen of parameters (10 at least!!!)
High CPU time consumption

Gives quasi-experimental equilibrium properties
Compatible with developed theories (SAFT, ...)
Less CPU time consumption

BUT

Poor prediction of transport properties
Tool: molecular simulation
Molecular dynamics

Determinist approach

Newton’s equation of motions

Verlet velocity integrator

Monte Carlo

Stochastic approach

Boltzmann probability distribution

Metropolis algorithm

Properties assessed through ensemble averages

\[
\langle E \rangle = \frac{1}{n} \sum_{i=1}^{n} E_i \quad \langle V \rangle = \frac{1}{n} \sum_{i=1}^{n} V_i
\]

\[
T = \frac{2 \langle K \rangle}{k_B N_f} \quad K = \sum_{i=1}^{n} \frac{m_i v_i^2}{2}
\]

\[
\langle P \rangle = \frac{N k_B T}{V} + \frac{1}{3V} \sum_{i=1}^{n} \overrightarrow{r}_k \overrightarrow{F}_k
\]

\[
C_v = \frac{1}{k_B T^2} (\langle E^2 \rangle - \langle E \rangle^2)
\]

\[
D = \frac{1}{3N} \sum_{i=1}^{n} \int_{0}^{\infty} \langle v_i(t) v_i(0) \rangle
\]

\[
\eta = \frac{1}{6V k_B T} \sum_{\alpha \neq \beta} \int_{0}^{\infty} \langle f^p_{\alpha \beta}(t) f^p_{\alpha \beta}(0) \rangle \, dt
\]
Methodology
Methodology

Choice of the model: Semi-rigid LJC coarse grained

Technique to use: Molecular simulation

Properties assessed?

- Saturated liquid viscosity through Molecular dynamics
- Equilibrium properties (\(w, T_c, LVE\)) through monte carlo simulations

Correlation \(\mu_{\text{liqSat}_T\text{r}07}\)

Correlations \(\rho_{\text{liqSat}_T\text{r}07} W & T_c\)

Optimization: \(m, \sigma, \varepsilon + K_\theta\)

Molecular simulations for prediction of ALL fluid properties
Parametrization
Parametrization

Approaches

- **Experimental**
- **CoarseGrained**
- **UnitedAtom**
- **AllAtom**
- **Ab initio**

A Top-down approach based on extended Corresponding States Scheme

<table>
<thead>
<tr>
<th></th>
<th>Microscopic</th>
<th>Macroscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy scale</td>
<td>ε</td>
<td>T_c</td>
</tr>
<tr>
<td>Length scale</td>
<td>σ</td>
<td>$\rho_{\text{liq,}Tr=0.7}$</td>
</tr>
<tr>
<td>Asphericity</td>
<td>m, λ, K</td>
<td>ω</td>
</tr>
<tr>
<td>Viscosity</td>
<td>m, λ, K</td>
<td>$\mu_{\text{liq,}Tr=0.7}$</td>
</tr>
</tbody>
</table>

\[
\min F(m, K_\theta) = \left| W_{CG}^{\text{Tr}_{0.7}} - W_{Exp}^{\text{Tr}_{0.7}} \right| + \left| \mu_{\text{Liq Sat,} Tr_{0.7}}^{CG} - \mu_{\text{Exp}}^{\text{Liq Sat,} Tr_{0.7}} \right|
\]

\[
\varepsilon = \frac{k_B T_c}{T_{CG}^{\text{Tr}_{0.7}}} \\
\sigma = \sqrt[3]{\frac{M_\rho_{CG,\text{sat,Liq,}Tr_{0.7}}^{\text{Exp}}}{\rho_{\text{sat,Liq,}Tr_{0.7}}^{\text{Exp}}}}
\]

Bottom Up: Iterative Boltzmann Inversion method, Force matching, ...
Reith et al. 2003, Moore et al. 2014...

Top Down: Saturation curve fit ($P_{\text{Sat}}^{\text{Liq}}, \rho_{\text{Sat,Liq}}$, $C_p^{\text{Liq}}, H_{\text{Vap}}$...), Corresponding states
Lafitte et al. 2006, Mejia et al. 2014, Hoang et al. 2017...

Requires only 4 macroscopic experimental data
Unicity of the solution
Parameters are physically more consistent
Results
normal alkanes

Excellent predictions! « Transferability »

Works very well for iso alkanes, polars,...
Our model performs very well for properties not included in the optimization: very good « Representability »
Our Coarse Grained model can do better than most fine models!
CPU time?
CPUtime: AA vs UA vs CG

$\text{tSIM} = 9\text{nS}$
$T = 500\text{K}$
$\text{Rho}=800\text{kg/m}^3$

nC10H22

- **tCPU vs N**
 - Nbr of molecules

- **tCPU vs Nc**
 - Carbon number

- **tCPU vs rc**
 - $rc\ [\text{A}^*]$

nC16H34

- **tCPU vs N**
 - Nbr of molecules

- **tCPU vs rc**
 - $rc\ [\text{A}^*]$
CPU time, can we do more? A SAFT type model
SAFT theory...

The Model: SemiRigid LJ chains

Molecular simulation (exact properties) → Validation

Real fluids (Exact experimental properties)

+ rigidity

Open issue!!!
The SAFT EoS is written in terms of the Helmholtz free energy:

\[
\frac{A_{\text{res}}}{N_c kT} = \frac{A_{\text{Mono}}}{N_m kT} + \frac{A_{\text{Chain}}}{N_c kT} + \frac{A_{\text{Assoc}}}{N_c kT} + \frac{A_{\text{Rigidity}}}{N_c kT} + \cdots
\]

Most famous models: PC-SAFT, SAFT-\(\Upsilon\)-Mie, Soft-SAFT
SAFT to real Fluids

N-Alkanes

Very accurate predictions

With the SAFT model, results are in seconds!!!
While simulation may take hours, days...
Merci