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ARIA Project
ARIA (Accurate ROMs for Industrial Applications) project to develop computationally
accurate, robust and efficient predictive Reduced-Order Models for applications with
complex physical phenomena.

Focus on renewable energy: Joint collaboration Inria-IFPen
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Model large-size offshore wind turbines: 6-12 MW

• Data-driven machine learning techniques for wind
farm-scale flow simulations.

• Coupling actuator lines (SOWFA) with data-driven
machine learning for the wake.



Context

Motivation

Reduction of the computational cost of high fidelity, wind farm scale simulations.

Approach

Collate several single wind turbine models and an appropriate propagation model.

Simulations with realistic flow conditions −→ Data −→ Data-driven modeling

Mesoscale flow Turbine Plant Array
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MCIA resources
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Wind turbine simulation

• Simulator fOr Wind Farm Applications
• Solver to investigate wind turbine and wind plant performance under the full range of
atmospheric conditions and terrains.
"Precursor" atmospheric

simulation (OpenFOAM)

1 km

3 km

4 km

Boundary data at

fixed time intervals

Actuator line or disk 

turbine aerodynamics models

Wind turbine and 

wind farm simulation

Initial condition:

Precursor volume field

Inflow boundary condition:

Precursor sampled planes
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Wind turbine simulation from
precursor fields:

•∼50 million cells

•180 Intel®Xeon®Gold
SKL-6130 2.1 GHz processors
on textttcompute SD530
nodes of the MCIA Curta
cluster

•∼6.5 days of computation time
to simulate ∼400 s of flow



Simulation output
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• Computational domain:
4 km × 3 km × 1 km

• Atmospheric boundary layer:
Neutral
LES SGS Model: One-equation eddy
viscosity model
Solver: PISO
Streamwise velocity magnitude at
hub-height = 8 m/s
Aerodynamic roughness height =
1E-2 m (level grass plain)

• Wind turbine: NREL 5 MW Ref.
Turbine models:
- Actuator line model - Advanced
- Actuator disc model

Postprocess in ParaView on Curta’s visu node

Iso-surface of Q-criterion (Q=0.012 s−2)
colored by streamwise velocity magnitude



Simulation output

Sampling of field variables:
• ABL develops up to 20000 s after which precursor data is collected.
• ADM simulation is initiated and sampling is performed:

• Fields: U T p p rgh kSGS nuSgs
• Sampling time step: 0.35 s (equivalent to ∼ 14 snapshots per rotation)
• Sampling time window: 20000 – 20400 s
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Simulation output

Snapshot generation:

• ∼1 million cells near the wind turbine.

• 1150 snapshots account for a disk space of ∼150 GB.

iRODS storage:

• Consistent I/O with tar compression.
$ tar -cvf <tar-file.tar> <source-directory> # Create archive

$ iput -fPvDtar <tar-file.tar> <irods-destination> # Upload archive

• Access the archived directory by remotely mounting it on iRODS.
$ imcoll -m tar <tar-file.tar> <mount-directory> # Mount

$ imcoll -Usp <mount-directory> # Unmount
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Model order reduction

Motivation: Representation of complex high-dimensional data in a simpler low-dimensional
space such that the dominant characteristics are preserved.
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Proper Orthogonal Decomposition (POD)

POD modal description of velocity ũ field in a low-fidelity domain (ΩLF ):

ũ(x, t) = fu(x, t) +
N∑

i=1

ûi (t)Φi (x), ûi ∈ R,Φi ∈ Rd , x ∈ ΩLF .

Example: Laminar vortex shedding over a cylinder at Re = 100
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POD - Laminar vortex shedding

MPI-based parallel POD implementation in C++:
parallel-pod – Source code: https://gitlab.ifpen.fr/supercalcul/rom4wt/-/tree/main/POD

Runtimes of POD calculation
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POD - Laminar vortex shedding

Normalized RMSE = 1.21E-5 (for all configurations):

Simulation Reconstruction

Streamwise velocity at t = 200 s.
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POD of SOWFA simulation dataset

Statistical stationarity of snapshots:
• Streamwise velocity probed at 15D downstream of the turbine.
• Snapshot files read in parallel using mpi4py module.
Speedup of 15x with 32 processors as compared to serial implementation.
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POD of SOWFA simulation dataset

Dataset:

• Nt = 370 snapshots

• Each snapshot contains three components of velocity vector (ux , uy , uz) stored at
Np = 1081608 data points.

MPI-based parallel POD implementation in C++:

Task (32 processors) Time

Reading snapshots... 43.7s
Computing projection matrix... 29.2s
Computing POD modes... 105.1s
Writing 40 POD modes... 179.8s

Wall time 357.9s
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POD of SOWFA simulation dataset

Snapshot POD of SOWFA simulation dataset:

• Relative information content, RIC ≈ 70% corresponding to 40 most energetic modes.
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POD of SOWFA simulation dataset

Snapshot POD of SOWFA simulation dataset:

• In-sample reconstruction: Average NRMSE = 1.419× 10−4, Max NRMSE = 0.1406.

... ...

Higher-order

modes

N = 40

Mode 1 Mode 2 Mode 10

Reconstruction Simulation

Mean field

POD modes representing unsteady fluctuating components

Mean field
+

Modes 1-40
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In-sample prediction

The time-series data is split into training and test subsets (70:30 ratio in general).
The training subset is used to build the POD basis Φi (x), used to project the test snapshots:

P(uj(x)) = Φ0(x) +
N∑

i=1

⟨uj(x)−Φ0(x),Φi (x)⟩ΩΦi (x).

Projection error:
ej(x) = ||uj(x)| − |P(uj(x))|| .

Random selection from SOWFA simulation dataset to create training and test subsets:
• 450 snapshots in the time window [20150.2, 20374.95] s selected to build the basis, and
• the remaining 193 snapshots selected to test the prediction error using the basis.

Time
Training Test
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In-sample prediction
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Number of modes, N=80.

Prediction performed in parallel
in time using mpi4py.

Instantaneous velocity magnitude
plots showcase the ability of the
POD-basis to provide fair
in-sample prediction.
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Conclusion

• MCIA’s Curta cluster provides the necessary resources to perform scientific research.

• Parallelized implementation provides significant reduction in the code runtimes -
∼6× faster POD calculation, ∼15× faster file I/O.

• Remote visualization tools facilitate plotting of results.

• iRODS offers a resilient archive storage of the simulation results.
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Thank you for your attention.
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