Data-driven machine learning techniques for wind farm-scale flow simulations – Implementing MCIA HPC resources

Nishant KUMAR

MEMPHIS Group Inria, Bordeaux – Sud Ouest

JSMCIA2022 : Journée Scientifique 2022 du Mésocentre de Calcul Intensif Aquitain Institut de Mathématiques de Bordeaux, Talence (FRANCE)

21 October 2022

ARIA Project

ARIA (Accurate ROMs for Industrial Applications) project to develop computationally accurate, robust and efficient predictive Reduced-Order Models for applications with complex physical phenomena.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 872442 (ARIA).

Focus on renewable energy: Joint collaboration Inria-IFPen Model large-size offshore wind turbines: 6-12 MW

- Data-driven machine learning techniques for wind farm-scale flow simulations.
- Coupling actuator lines (SOWFA) with data-driven machine learning for the wake.

Context

Motivation

Reduction of the computational cost of high fidelity, wind farm scale simulations.

Approach

Collate several single wind turbine models and an appropriate propagation model.

Simulations with realistic flow conditions \longrightarrow Data \longrightarrow Data-driven modeling

MCIA resources

- 1. Flow simulation
- 2. Post-processing
- 3. In-sample prediction
- 4. Conclusion

1. Flow simulation

- 2. Post-processing
- 3. In-sample prediction
- 4. Conclusion

Wind turbine simulation

- Simulator fOr Wind Farm Applications
- Solver to investigate wind turbine and wind plant performance under the full range of atmospheric conditions and terrains.

Wind turbine simulation from precursor fields:

- •~50 million cells
- •180 Intel[®]Xeon[®]Gold SKL-6130 2.1 GHz processors on textttcompute SD530 nodes of the MCIA *Curta* cluster
- •~6.5 days of computation time to simulate ~400 s of flow

Simulation output

- Computational domain: 4 km × 3 km × 1 km
- Atmospheric boundary layer: Neutral LES SGS Model: One-equation eddy viscosity model Solver: PISO Streamwise velocity magnitude at hub-height = 8 m/s Aerodynamic roughness height = 1E-2 m (level grass plain)
- Wind turbine: NREL 5 MW Ref. Turbine models:
 - Actuator line model Advanced
 - Actuator disc model

Iso-surface of Q-criterion (Q= 0.012 s^{-2}) colored by streamwise velocity magnitude

Simulation output

Sampling of field variables:

- ABL develops up to 20000 s after which precursor data is collected.
- ADM simulation is initiated and sampling is performed:
 - Fields: U T p p_rgh kSGS nuSgs
 - Sampling time step: 0.35 s (equivalent to \sim 14 snapshots per rotation)
 - Sampling time window: 20000 20400 s

Snapshot generation:

- ${\sim}1$ million cells near the wind turbine.
- 1150 snapshots account for a disk space of ${\sim}150$ GB.

iRODS storage:

- Consistent I/O with tar compression.
 - \$ tar -cvf <tar-file.tar> <source-directory> # Create archive
 - \$ iput -fPvDtar <tar-file.tar> <irods-destination> # Upload archive
- Access the archived directory by remotely mounting it on *iRODS*.
 - \$ imcoll -m tar <tar-file.tar> <mount-directory> # Mount
 - \$ imcoll -Usp <mount-directory> # Unmount

1. Flow simulation

2. Post-processing

- 3. In-sample prediction
- 4. Conclusion

Model order reduction

Motivation: Representation of complex high-dimensional data in a simpler low-dimensional space such that the dominant characteristics are preserved.

Proper Orthogonal Decomposition (POD)

POD modal description of velocity $\tilde{\mathbf{u}}$ field in a low-fidelity domain (Ω_{LF}):

$$\widetilde{\mathbf{u}}(\mathbf{x},t) = \mathbf{f}_u(\mathbf{x},t) + \sum_{i=1}^N \widehat{u}_i(t) \mathbf{\Phi}_i(\mathbf{x}), \quad \widehat{u}_i \in \mathbb{R}, \mathbf{\Phi}_i \in \mathbb{R}^d, \mathbf{x} \in \Omega_{LF}.$$

Example: Laminar vortex shedding over a cylinder at Re = 100

Sampling zone using cloudPoint probes for generating snapshots $x \in [0.5, 29.5], y \in [-6.5, 6.5]$

Grid size for meshing and sampling, h=0.05 Number of sampling points, $N_{\rm p}=151641$

POD - Laminar vortex shedding

MPI-based parallel POD implementation in C++: **parallel-pod** – Source code: https://gitlab.ifpen.fr/supercalcul/rom4wt/-/tree/main/POD

Runtimes of POD calculation

POD - Laminar vortex shedding

Normalized RMSE = 1.21E-5 (for all configurations):

Streamwise velocity at t = 200 s.

Statistical stationarity of snapshots:

- Streamwise velocity probed at 15D downstream of the turbine.
- Snapshot files read in parallel using mpi4py module. Speedup of 15x with 32 processors as compared to serial implementation.

Dataset:

- $N_t = 370$ snapshots
- Each snapshot contains three components of velocity vector (u_x, u_y, u_z) stored at $N_p = 1081608$ data points.

MPI-based parallel POD implementation in C++:

Task (32 processors)	Time
Reading snapshots	43.7s
Computing projection matrix	29.2s
Computing POD modes	105.1s
Writing 40 POD modes	179.8s
Wall time	357.9s

Snapshot POD of SOWFA simulation dataset:

• Relative information content, $RIC \approx 70\%$ corresponding to 40 most energetic modes.

Snapshot POD of SOWFA simulation dataset:

• In-sample reconstruction: Average $NRMSE = 1.419 \times 10^{-4}$, Max NRMSE = 0.1406.

Mean field Mode 1 Mode 2 Mode 10 Higher-order modes N = 40Reconstruction Simulation Mean field Modes 1-40 UMagnitude 320+00 4 1.0e+01

POD modes representing unsteady fluctuating components

- 1. Flow simulation
- 2. Post-processing
- 3. In-sample prediction
- 4. Conclusion

In-sample prediction

The time-series data is split into training and test subsets (70:30 ratio in general). The training subset is used to build the POD basis $\Phi_i(\mathbf{x})$, used to project the test snapshots:

$$\mathcal{P}(\mathbf{u}_j(\mathbf{x})) = \mathbf{\Phi}_0(\mathbf{x}) + \sum_{i=1}^N \left< \mathbf{u}_j(\mathbf{x}) - \mathbf{\Phi}_0(\mathbf{x}), \mathbf{\Phi}_i(\mathbf{x}) \right>_\Omega \mathbf{\Phi}_i(\mathbf{x}).$$

Projection error:

$$e_j(\mathbf{x}) = \left|\left|\mathbf{u}_j(\mathbf{x})\right| - \left|\mathcal{P}(\mathbf{u}_j(\mathbf{x}))\right|\right|.$$

Random selection from SOWFA simulation dataset to create training and test subsets:

- 450 snapshots in the time window [20150.2, 20374.95] s selected to build the basis, and
- the remaining 193 snapshots selected to test the prediction error using the basis.

In-sample prediction

Number of modes, N=80.

Prediction performed in parallel in time using mpi4py.

Instantaneous velocity magnitude plots showcase the ability of the POD-basis to provide fair in-sample prediction.

- 1. Flow simulation
- 2. Post-processing
- 3. In-sample prediction
- 4. Conclusion

- MCIA's Curta cluster provides the necessary resources to perform scientific research.
- Parallelized implementation provides significant reduction in the code runtimes ${\sim}6{\times}$ faster POD calculation, ${\sim}15{\times}$ faster file I/O.
- Remote visualization tools facilitate plotting of results.
- *iRODS* offers a resilient archive storage of the simulation results.

Thank you for your attention.

Special acknowledgements to:

Michel BERGMANN (INRIA), Frédéric BLONDEL (IFPEN), Adrià BORRAS-NADAL (IFPEN), Guillaume ENCHERY (IFPEN), Laurent FACQ (IMB), Cédric GAZOPPI (IFPEN), Angelo IOLLO (IMB), Angela SCARDIGLI (Optimad), and the HPC support team!